Mercury Control Program Review

The PCO Process for Removal of Mercury from Flue Gas

Christopher R. McLarnon, Evan J. Granite, and Henry W. Pennline

July 13, 2005

National Energy Technology Laboratory

GP-254 / PCO Process

- Alternative to ACI Developed
- Oxidation of Mercury
- Irradiation of Flue Gas with 254-nm Light
- 90% Oxidation Attained at Bench-Scale
- Low Parasitic Power (less than 0.5%)
- Patent Issued June 2003
- Licensed for Application to Coal-Burning Power Plants (Powerspan Corporation)
- Potential Application for Incinerators

Regulatory Drivers

- EPA Announcement March 15, 2005
- Clean Air Mercury Rule
- Several States Requiring Stricter Reductions
- 70-90% Removal Requirement
- Phased in Over Several Years

Fossil Energy Program Goals

Develop more effective mercury control options

- Cost-effective and high level of mercury removal
- Meet long-term IEP program goal of 90% mercury reduction at cost reduction of 25-50%
- Must be better than ACI

Technical Challenges Mercury is Difficult to Capture

- Low concentration
- Exists as Hg⁰
- Harsh conditions of coalderived flue gas
- Competitive adsorption / poisoning
- Low sorbent reactivity
- Hg is semi-noble metal

ACI for Mercury Removal

- Benchmark technology
 - -Deficiencies for flue gas applications
- General adsorbent
- Limited temperature range
- Sequestration
- High sorbent / Hg ratio (3,000:1 to 100,000:1)
- Contacting methods
- Expensive: \$1,000 3,000/ton
- 500 MW_e power plant: \$0.5 10 MM/yr

Technical Challenges Mercury is Difficult to Measure

- Low concentration & harsh conditions
- Exists as Hg, HgCl₂, and Hg_(particulate)
- Continuous conversion among three
- Broad-band absorbers
- Quenching
- Photosensitized oxidation
- Competitive adsorption/ poisoning

Background: GP-254 Process Discovery

- Sorbent development
- UV measurement of mercury
- AFS
- Unwanted red-brown stains
- Mercuric oxide
- Serendipity

Photochemical Oxidation of Mercury

- Mercury can absorb and emit 253.7 nm light
- Atomic Absorption (AAS)

Hg + 253.7 nm radiation
$$\rightarrow$$
 Hg* Hg 6 ($^{3}P_{1}$) (I)

Atomic Emission (AES)

$$Hg^* \rightarrow Hg + 253.7 \text{ nm radiation}$$
 (II)

- Atomic Fluorescence (AFS): steps (I) and (II)
- Basis for CEMs

What Is Quenching?

- Intensity of fluorescent emission diminished
- Energy transfer due to collisions
- Function of size, shape, and reactivity
- Primed for chemical reaction (activation)
- Interferes with ultraviolet spectroscopy

Hg + 253.7 nm light
$$\rightarrow$$
 Hg* Hg 6 ($^{3}P_{1}$)
Hg* \rightarrow Hg + 253.7 nm light Fluorescence
Hg* + M \rightarrow Hg + M* Quenching

Quenching Cross Sections

$$Hg 6(^{3}P_{1}) + M \rightarrow Hg 6(^{1}S_{0}) + M^{*}$$

Function Of Size, Shape And Reactivity

Species Cross Section (cm²)

HCI 37.0×10^{-16}

NO 24.7×10^{-16}

 O_2 13.9 x 10^{-16}

CO 4.1×10^{-16}

CO₂ 2.5 x 10⁻¹⁶

 H_2O 1.0 x 10^{-16}

 N_2 0.4 x 10⁻¹⁶

Photochemical Oxidations

- First described in 1926 by Dickinson & Sherrill (O₂)
- Gunning discovered others in 1950s (HCI, H₂O, CO₂)

Relevant Overall Reactions

Hg + 2
$$O_2$$
 + 253.7 nm light \rightarrow HgO + O_3
Hg + HCl + 253.7 nm light \rightarrow HgCl + 1/2 H₂
Hg + H₂O + 253.7 nm light \rightarrow HgO + H₂
Hg + NO₂ + 253.7 nm light \rightarrow HgO + NO
Hg + CO₂ + 253.7 nm light \rightarrow HgO + CO

- Interferes with UV-based CEMs
- Potential removal method

Lab-Scale Photoreactor

Experimental Parameters

- Quartz Photoreactor, 6-watt UV lamp
- Temperatures: 80°F, 280°F, 350°F
- Flow-rate: 60 ml/min Reaction time: 350 min
- Intensity: 1.4 mW/cm²

Gas Compositions

A: 16% CO₂, 5% O₂, 2000 ppm SO₂, 300 ppb Hg, balance N₂

B: 16% CO₂, 5% O₂, 2000 ppm SO₂, 500 ppm NO, 300 ppb Hg, balance N₂

Results: Photochemical Removal

<u>Gas</u>	Temp (°F)	Mean Hg Capture (%)
Α	350	2.3 ± 2.0
Α	280	71.6 ± 30.1
Α	80	67.8 ± 28.8
В	280	26.8 ± 11.7

- Removal as mercuric oxide/mercurous sulfate stain
- Higher removals below 300°F
- Limited by thermal decomposition of O₃ (300-350°F)
- NO reduces removal, possibly by consuming ozone
- Low energy consumption
- Potentially low operating costs

Conclusions: Photochemical Oxidation

Method For Mercury Removal

- Obvious interference For CEMs
- High levels of mercury removal from SFG
- Capture as HgO and Hg₂SO₄
- Enhanced removal below 300°F

Conclusions: Photochemical Oxidation

Potential For Better Performance

- Other oxidants (HCl, H₂O, NO₂) in flue gas
- Promising process economics
- Potential for multi-pollutant control
- Pilot-scale data needed
- Low rank coals are of particular interest

Larger Scale Testing Bench-Scale Photoreactor

- Slipstream of flue gas from 500-lb/hr pilot
- Temperature: 280°F 350°F
- Effect of temperature, radiation intensity residence time & composition
- Removals measured on-line by CEM
- Impact upon other flue gas species
- Determine GP-254 process economics

NETL BENCH-SCALE PHOTOREACTOR

NETL Bench-Scale Photoreactor

- ½-inch by 33-inch Quartz Tube
- Two 30-W Low Pressure Mercury Lamps
- 254-nm Intensity: 20 mw/cm²
- Gas Composition: PRB Flue Gas
- Temperature: 120°F 280°F
- Flow-Rate: 8 liters/min
- Sir Galahad CEM Monitor Inlet/Outlet Mercury

NETL Bench-Scale Results

Significant Level of Mercury Oxidation

- Slipstream of Particulate-Free PRB Flue Gas
- 6 50 μg/Nm³ Elemental Mercury (Spiking)
- Low Power Consumption
- Typically 30-70% Removal of Mercury
- Extremely Low UV Intensity Applied
- Non-Optimized Bench-Scale Apparatus

Powerspan Bench-Scale Results

Commercial Lamp System

- Flow-rate: 24 scfm
- Temperature: 120 140°F
- Intensity: 13.8 W/cm² -- Low Parasitic Power
- Mercury Concentration: 13.0 μg/Nm³
- 5.6% O₂, 13% CO₂, 8% H₂O, 1300 ppm SO₂,
 220 ppm NO, 20 ppm CO, and balance N₂
- 91% Removal
- Pilot-Scale Tests in 2005

